MG26018 Simulation Modeling and Analysis

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

Fall 2019

Assignment 1

Due Date: October 17 (in class)

Instruction

(a) You can answer in English or Chinese or both.
(b) Show enough intermediate steps.
(c) Write the answers independently.

Question 1 (5 points)

If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables, and $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$, prove that

$$
\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\cdots+\lambda_{n}\right)
$$

Question 2 (10 points)
Prove $\widehat{L}_{Q}(T)=\widehat{\lambda} \widehat{W}_{Q}(T)$ on lecture note Lec2 page 30.2/62. (Hint: Use similar argument for proving $\widehat{L}(T)=\widehat{\lambda} \widehat{W}(T)$ and illustration figure on that page.)

Question 3 (25 points)
Prove Theorem 5 (Limiting Distribution of $M / M / s$ Queue) on lecture note Lec 2 page 40/62. (Hint: Use similar argument for proving Theorem 4.)

Question 4 (25 points)
Consider two systems. System 1: There are two independent $M / M / 1$ queues, each with arrival rate λ and service rate μ. System 2: There is one $M / M / 2$ queue with arrival rate 2λ and service rate μ for each server. Which system will perform better (i.e., more efficiently) in terms of the following four measures?
(1) The long-run average number of customers in the system;
(2) The long-run average sojourn time in the system;
(3) The long-run average number of customers waiting in the system;
(4) The long-run average waiting time in the system.

Question 5 (15 points)

Consider an $M / M / 1 / 5$ queue with arrival rate $\lambda=10 /$ hour and service rate $\mu=$ 15/hour.
(1) What is the probability that an arrival customer finds the station is full?
(2) What is the expected amount of time a customer who enters the station will spend in it?
(3) What is the expected amount of time an arrival customer will spend in the station? (Note: If a customer doesn't enter the station, the amount of time he spends in the station is 0 .)

Question 6 (20 points)
Consider such a station. Customers arrive from outside according to a poisson process with rate $\lambda=10 /$ hour. There is only one server, and the service time is exponentially distributed with rate $\mu=15$ /hour. When a customer finishes service, with probability 0.2 , he will re-enter the station immediately. (For example, he may realize he just forgot to do something.) For this station, find out
(1) The long-run average number of customers in the station;
(2) The long-run average sojourn time in the station. (Caution! When a customer re-enters the station, his previous sojourn time will accumulate.)

